Muscat.LinAlg.SVD module¶
- TruncatedSVDSymLower(matrix, epsilon: float64 | None = None, nbModes: int64 | None = None)[source]¶
Computes a truncated singular value decomposition of a symmetric definite matrix in scipy.sparse.csr format. Only the lower triangular part needs to be defined
- Parameters:
matrix (scipy.sparse.csr) – the input matrix
epsilon (float) – the truncation tolerance, determining the number of keeps eigenvalues
nbModes (int) – the number of keeps eigenvalues
- Returns:
np.ndarray – kept eigenvalues, of size (numberOfEigenvalues)
np.ndarray – kept eigenvectors, of size (numberOfEigenvalues, numberOfSnapshots)